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Abstract 
Stability analysis of miscible displacement has several applications in industries such 
as oil recovering and ground water tables. In this article an analytical solution is 
presented based on Tan and Homsy’s results for stability analysis in t = 0. Moreover, a 
novel semi analytical solution is used, based on weighted residual method, to solve the 
Fourier space equations. The results are shown as σ (disturbance growth rate) – k 
(wave number); profiles for different values of mobility ratios and times. A comparison 
with the results of the other researches is also presented.  
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1. Introduction 
Fluid flow instability is one of the important 
and classic problems of Fluid Mechanics. 
The transition from laminar flow to turbulent 
flow and instability of the fluid interface has 
become one of the most common problems 
of fluid flow instability in recent years. 
Investigations of the instability of miscible or 
immiscible displacement has several 
applications in the industries with regards to 
the fluid flow in porous media. Therefore, 
this subject has been taken seriously by the 
researchers since the 1950s. This 
phenomenon was modeled for the first time 
by Hill, in 1952 [1]. When a fluid with lower 

viscosity replaces a fluid with higher 
viscosity, the interface of the two fluids 
would commonly get perturbed. The 
development of the perturbation will cause a 
phenomenon which is called Viscous 
Fingering [2].  
The most important application of this 
phenomenon is in the efficient oil recovery. 
In many applications, the viscous fingering 
instabilities are undesirable as they result in 
early breakthrough. Also, any design aimed 
towards eliminating the fingering instabilities 
or controlling the growth of the viscous 
fingers is of technological importance. Hill 
and Suffman-Taylor in the 1960s and 
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Homsy, in recent years, have studied the 
effect of the different parameters on the 
viscous fingerings. However, because of the 
numerical solution complexities, most of 
these investigations were based on the 
experimental data [3]. Displacement 
processes in porous media are of special 
consideration in efficient oil recovery, 
packed columns, fixed bed regeneration, etc. 
Generally, the lower viscosity of the 
displacing fluid towards the displaced fluid 
would lead to the hydrodynamic instability 
which results in a channel formation of the 
displacing fluid in the displaced fluid region 
[4].  
The first mathematical analysis of linear 
instability for the displacement of two 
immiscible fluids was done by Chouke et al. 
in 1959 [5]. Considering the surface tension 
at the interface, they figured there is a 
dangerous cut-off wave length for instability. 
Development of their theory for the miscible 
fluids in the absence of surface tension and 
diffusion explains the net flux of molecules 
from a region of higher concentration to one 
of lower concentration, resulting in the 
borderless increase of growth rate with the 
wave number. This phenomenon is 
physically unreal and there are physical 
mechanisms which would dampen the short 
wavelengths. 
Perrine clarified that the diffusion effect 
should be considered for the miscible fluids, 
but his solution for the linear stability 
equations was not accurate. Inserting the 
diffusion effect leads to the time dependence 
of the base state solution and results in errors 
and complexity [6]. 
Heller also investigated the miscible 
displacements including diffusion. 

Nevertheless, he considered some uncertain 
assumptions about the type of perturbations 
which lead to a second order, non-
homogeneous Eigenvalue equation [7]. With 
regards to a system described by linear 
stability theory, there should not be any 
indication of  
the non-homogeneity, therefore, Heller’s 
method is wrong. 
Schowalter [8] studied the fingering 
phenomenon due to both the density and 
viscosity. He used an interpenetrated region 
with constant thickness for diffusion 
computation. He assumed a constant mass 
flux to achieve a base state. This assumption 
reduces the problem to some particular 
concentration profile which is not real 
because of the time dependency of the base 
state solution. 

Wooding was one of the few researchers who 
studied the stability of the time reliance 
based state [9]. He considered the problem as 
an initial value problem and expanded the 
perturbation solution by Hermit polynomials. 
His main focus was on gravitational 
instability, therefore he used Boussinesq 
approximation. He found that even though 
the small perturbations should tend to zero at 

∞→t , they can grow in a wavelength range, 
as there would be the possibility of offending 
from the linear confinement theory. 

Tan and Homsy [3] considered a system with 
exponential viscosity profile and isotropic 
dispersion ( D D⊥= ). Dispersion is the 

process whereby solutes are mechanically 
mixed during advective transport caused by 
the velocity variations at the microscopic 
level. The results showed that at times that 
are long enough, dispersion makes a shift in 
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the bigger wavelengths and leads to stability 
of the flow. Zimmerman and Homsy [10] 
performed several experiments to study 
spreading, tip splitting, shielding and pairing 
phenomena. According to their results, 
pairing occurs in the adjacent fingers. Also, 
growth of a finger may stop the other fingers 
from growing, which is called Shielding. The 
results show the sensitivity and complexity 
of two dimensional fingering. The finite 
difference method (FDM) is a standard 
method for numerical simulation of the 
miscible displacement in the porous medium, 
regardless of the dispersion effects. Rogerson 
and Meiberg [11] investigated the similarities 
of vertical and horizontal displacements in 
viscous fingering. Manickam and Homsy 
[12] discovered that the non-uniformity of 
the viscosity-concentration profile is 
effective in the non-linear growth of the 
viscous fingers. Riaz and Meiberg [13] 
performed a numerical-experimental analysis 
of viscous fingering in a radial flow Hele-
Shaw cell. Brailovsky et al. [14] presented an 
analytical solution introducing a curve linear 
coordinate. This was the first time that a 
curve linear system was used to analyze the 
fingering phenomenon, nevertheless, the last 
assumptions in other researches were 
confirmed. Dewit [15] studied the viscous 
fingering regarding a surface reaction at the 
interface of the two fluids. In this study the 
reaction was assumed to be of third order. 
The base state solution was achieved for high 
Damkohler numbers (Da). In another 
investigation, Dewit used the Adams-
Bashforth method to analyze the governing 
equation which includes the non-linear terms. 
The Fourier space equation has been studied 
linearly. In this article the linear stability of 

miscible displacements has been 
investigated. After the problem simulation, it 
would be analytically solved for t=0. In 
addition, for 0t ≠ , a new semi-analytical 
solution has been used and the results have 
been presented. 
 
2. Theory 
The considered system can be seen in Fig. 
(1). With the velocity of U and in the x 
direction the flow is assumed to be uniform 
and incompressible. The porous medium is 
homogeneous.  
 

 
Figure 1. Schematic of the miscible displacement in a 
porous medium 
 
The porosity and dispersion are constant and 
isotropic. 
The governing equations can be written as: 
 

0u. =∇  (1) 
 

up μ−=∇  (2) 
 

cDcu
t
c 2. ∇=∇+
∂
∂

 (3) 
 
Note: u  is the volume averaged velocity, p  
is the pressure, μ  is the ratio of the viscosity 
to the permeability of the medium referred to 
simply as the “viscosity”, c  is the 
concentration of the displacing fluid and D  
is the isotropic dispersion coefficient taken 
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throughout to be constant. Equations (1-3) 
are continuity, Darcy and concentration 
equations respectively. The viscosity is 
assumed to vary exponentially with the 
concentration: 
 

R
dc
d

=
μ

μ
1

 (4) 
 

)exp( R=α  (5) 
 
Where R  is a parameter determined by 

mobility ratio and
1

2

μ
μ

α = .  

Regarding the constant velocity of the fluid, 
we consider a moving reference Utxx 1 −=  
to assume the interface motionless ( 1x  is the 
flow direction in fixed coordinate and x  is 
the flow direction in moving coordinate). 
 

0wvu zyx =++  (6) 
 

UuPx μμ −−=  (7) 
 

vPy μ−=  (8) 
 

wPz μ−=  (9) 
 

We transform the system of equations to 
Moving Coordinate System with the velocity 
U  and the dimensionless equations with 
U , UD / , 2/ UD , 1μ  as velocity, length, time 
and viscosity scales relatively. So we have: 
 

μμ −−= uPx  (10) 
 

cwcvcucc 2
zyxt ∇=+++  (11) 

The time dependent base state solution to the 

dimensionless equations in the Moving 
Coordinate System is: 
 

0wvu ===  (12) 
 

),()( 0000 txc μμμ ==  (13) 
 

0
1 1
2 2

xc ( x ,t ) [ erf ]
t

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (14) 

 

0 0

x

P ( x ,t ) ( s ,t )dsμ= −∫  (15) 

 
3. Stability analysis  
Linear stability analysis of the above 
problem could be performed by transforming 
the equation into Fourier space. The 
perturbation parameters would be introduced 
as [3]: 
 

u c y z( u ,c ) ( , )exp( t )exp[ i ( k y k z )]δ δ σ′ ′ = +  

 (16) 
 

Using quasi-steady state approximation 
(QSSA), which is the higher variations of 
perturbation rate in comparison with the 
variation rate of base state [5], the Fourier 
space equations can be written as: 
 

2 2
20

02
0 0 0

1
u c

dd d k d( ( x ,t ) k ) ( )( )
dx dx dx ( x ,t ) dc

μ μδ δ
μ μ

+ − =

 

 (17) 

uc tx
dx
dck

dx
d δδσ ),()( 0

02
2

2
−=−−

 (18) 
 
Noting equation (4) and incorporation of 
equations (17) and (18) leads to Fourier 
space equation according to velocity 
perturbation parameter [3]: 
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2 2
2 20

0 02 2

2 0
0

u

u

dcd d d( ( t ) k )( R ( x ,t ) k )
dx dx dx dx

dcRk ( x ,t )
dx

σ δ

δ

− − + −

=

  

 (19) 
 
Equation (19) is the Eigenvalue problem. The 
perturbations become zero at ∞→ ∓x . At 0t = , 0c  

can be expressed as a step function so 

)(),( 0
0 xtx

dx
dc

δ= .  

 
3-1. Stability analysis at t=0 
Stability analysis for a step function 
concentration profile was first studied by 
Chouke [5]. In this paper, the analysis 
method at 0t =  is similar to the Tan and 
Homsy’s [9]. The equation for step function 
concentration profile (19) is simplified as: 
 

2 2
2 2

2 2 0u
d d( k )( k )
dx dx

σ δ− − − =  (20) 

 
According to the boundary condition 0u =δ  
at ∞→ ∓x , the answer can be written as: 
 

1 1 0u A exp( lx ) B exp( kx ) , xδ = + <   (21-a) 

 

2 2 0= − + − >u A exp( lx ) B exp( kx ), xδ  (21-b) 

 
where 22 kl +=σ . As for the Delta function 
property, the comparative conditions would 
be: 
 

)0()0( uu
−+ =δδ  (22-a) 

 

0 0u ud d( ) ( )
dx dx
δ δα + −=  (22-b) 

 
)0()0( −+ = cc δδ   (22-c) 

Integration of equation (19) from −0  to +0  
leads to: 
 

2 20 2 2
2 20

02

0

u

u

d d d( k )( k ( x ) k ) dx
dx dx dx

Rk ( x ) dx

σ δ δ

δ δ

+

−

+

−

− − + −

=

∫

∫
 (23) 
 
Equations (22-a) to (22-c) and (23) are 
necessary conditions for continuity, velocity 
disturbance term, pressure and concentration, 
respectively. Equations (22) and (23) can be 
shown in the matrix form: 
 

0AX =   (24) 
 

Where 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2

2

1

1

B
A
B
A

X  represents the unknown 

vector of perturbation velocity profile (eq.21) 
for 0x >  and 0x < . According to the 
equations (22) and (23), the coefficient 
matrix A is: 
 

1 2 3 4

1 1 1 1
1 0 1 0

A
l k l k
F F F F

α α

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (25) 

 
Where 2 2 3

1F k l R( k l )= − + ,
2 2 3

2F kl Rk Rkl= − − , 2
3F k l=  and 

2
4F kl=  are the coefficients resulted from 

the integration of equation (23). 
By equating the determinant of matrix A to 
zero, the characteristic equation is: 
 

 0Rkk2lk2 2 =−+   (26) 
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or 
2 2

2
k k Rkl − +

=
∓  and thereupon: 

 
2 2

u
1 [(Rk k ) k k 2Rk
2

δ = − − +  (27) 

 
Therefore, the most unstable case would be: 
 

22 5 7 3 5
43 5

2 5 4 0 118
4

m m
( )( ) R[ ] @ k

( ) R . R

σ − + −
=

−

−
= =   (28) 

 
3-2. QSSA at t>0 
For 0t >  the concentration profile would be 
a function of location at a constant time. 
Regarding the base state solution as 

]
2

1[
2
1

0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

t
xerfc  and equation (14), a 

simple analytical solution could not be found 
for equation (19) [14]. In this research, the 
weighted residual method (WRM) has been 
used, noting the analytical solution of 
equation (19) at t=0, the answer is assumed 
to be: 
 

0

0

u j j

u j j

a exp( jlx ) b exp( jkx ) , x

a exp( jlx ) b exp( jkx ) , x

δ

δ

+ +

− −

= + + + <

= − + − >

∑ ∑
∑ ∑

  

 (29) 
 
Where the boundary condition 0=uδ  at 

∞→ ∓x  is satisfied. In order to determine 
the ja  and jb , the profile should satisfy the 

equation (19). Moreover, for ] ]0,∞−∈x  
and [ [∞∈ ,0x , matching conditions have been 
considered as supplementary equations in 

order to preserve the continuity of velocity 
perturbation, pressure and concentration. 
Also, the final equation has been achieved by 
integration of the equation (19) from −0  
to +0 . Thus, in order to determine 4N2 +  
unknown coefficients ( 10 += Ntoj ), 4 
matching equations were used in addition to 
the N2  chosen nodes. 
 
4. Results and discussion 
The disturbance growth rate is illustrated in 
Fig. (2), showing the relationship between σ  
and k . The values are presented for 0=t , 

3=R  and 09.20=α . It can be determined that 
for wave numbers of greater than 0.75, the 
stability conditions would be confirmed. 
Also, the most critical situation occurs at 

345.0=k  where the growth rate is equal to 
0.202. The disturbance growth rate for 0≥t  
and 3=R  is shown in Fig. (3). 
 

 
 

Figure 2. The growth constant versus wave number 
for t=0, R = 3 and α=20.09 
 

When time advances, the amount of critical 
σ  decreases and the range of k  becomes 
slender where the instability occurs. Figs. (4) 
and (5) show the relationship between the 
characteristic growth rate and the wave 
number for different times and the two values 
of R=2 and R=5.  
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Figure 3. The growth constant versus wave number 
for t=0 and R = 3 
 
 

 
 
Figure 4. Relation between characteristic growth rate 
and wave number  for different times and R = 2 and   
R =5 
 
 
 

 
 
Figure 5. Relation between characteristic growth rate 
and wave number for different times and R =5 

The dependence of mσ  and mk  on the 
mobility ratio are approximately proportional 
to R2 and R respectively, which can be 
recalled from Analytical Solution. 
Fig. (6) shows the most critical value of the 
growth rate according to time and for 
different R  values. The growth constant 
decays with time. For R<0.2 and time >2, the 
decay rate of growth constant is negligible. 
 

 
Figure 6. The most critical value of growth rate 
according to time and for different R values 
 

5. Conclusions 
Above, miscible displacement stability in a 
porous medium was studied. Presenting a 
semi stable model, the analytical solution for 

0t =  was expounded while a semi analytical 
method was used in accordance to WRM. 
The investigations lead to prediction of a 
range for wave number where the instability 
conditions arise. For each mobility ratio and 
by the advancement of time, this range 
becomes narrower while the value of the 
most critical σ  decreases. Also, the wave 
number range for instability and the most 
critical σ  increase proportionally to R  by 
the increase in mobility ration every time. 
Comparing these results with the Tan and 
Homsy’s shows good agreement which 
proves the efficiency of the introduced 
method. 

Time (t) 
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