Document Type : Full article

Authors

School of Chemical Engineering, Iran University of Science and Technology, Narmak, P. O. Box: 16846, Tehran, Iran

Abstract

In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have an estimate of heat generated from typical magnetic nanoparticles, magnetite nanoparticles are synthesized and the heat dissipation amount from the synthesized nanoparticles exposed to an alternating magnetic field is measured and used in the computer simulation. The impact of the amount of heat generated from the magnetic nanoparticles exposed to an alternating magnetic field, their distribution patterns in the tumor and hyperthermia process duration time on the cell death rate in both cancer and healthy tissues are investigated. It is indicated that while various factors contributing in the heat dissipation amount from the magnetic nanoparticles are important in the effectiveness of the magnetic hyperthermia process, the distribution pattern plays the major role in determining the efficiency of the process.

Keywords

Main Subjects

[1]      Xiaoming Li, J. W., Aifantis, K. E., Fan, Y., Feng, Q., Cui, F. Z. and Watari, F., “Review article: Current investigations into magnetic nanoparticles for biomedical applications”, Journal of Biomedical Materials Research, Part A, 104 (5), 1285 (2016).
[2]      Mahdi Karimi, A. G., Sahandi Zangabad, P., Rahighi, R., Moosavi Basri, S. M., Mirshekari, H., Amiri, M., Shafaei Pishabad, Z., Aslani, A., Bozorgomid, M., Ghosh, D., Beyzavi, A., Vaseghi, A., Aref, A. R., Haghani, L., Bahramian, S. and Hamblin, M. R., “Review article: Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems”, Chemical Society Reviews, 45 (5), 1457 (2016).
[3]      Hudson, R., “Reveiw article: Coupling the magnetic and heat dissipative properties of Fe3O4 particles to enable applications in catalysis, drug delivery, tissue destruction and remote biological interfacing”, RSC Advances, 6 (5), 4262 (2016).
[4]      Franziska Henrich, H. R. and Odenbach, S., “Heat transition during magnetic heating treatment: Study with tissue models and simulation”, Journal of Magnetism and Magnetic Materials, 380, 353 (2015).
[5]      Ihab M. Obaidat, B. I. a. Y. H., “Review magnetic properties of magnetic nanoparticles for efficient hyperthermia”, Nanomaterials, 5 (63-89), (2015).
[6]      Manuel Bañobre-Lópeza, A. T. and Rivasa, J., “Review magnetic nanoparticle-based hyperthermia for cancer treatment”, Reports of Practical Oncology & Radiotherapy, 18 (6), 397 (2013).
[7]      W. Andra, H. N., Magnetism in medicine: A handbook, 1st ed., Wiley-VCH, (1998).
[8]      Renato Cavaliere, E. C. C. and Giovanella, B. C., “Selective heat sensitivity of cancer”, (May 15, 1967).
[9]      K. Motomura, M. I., Komoike, Y., Koyama, H., Inaji, H., Inoue, M., Nagae, H. and Nagano, I., “Novel thermal tumor ablation for breast cancer in mice using magnetic nanoparticles”, Cancer Research, 1916 (2009).
[10]  Rhythm R. Shah, T. P. D., Glover, A. L., Nikles, D. E. and Brazel, C. S., “Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia”, Journal of Magnetism and Magnetic Materials, 387, 96 (2015).
[11]  P. Wust, J. N., Felix, R., Deuhard, P., John, W. and Louis., A., “Numerical approaches to treatment planning in deep RF-hyperthermia”, International Journal of Hyperthermia, 7, 157 (1991).
[12]  P. Wust, J. N., Felix, R., Deuhard, P., John, W. and Louis., A., “Numerical approaches to treatment planning in deep RF-hyperthermia”, Strahlenther. Onkol, 165, 751 (1989).
[13]  Cetas, R. B. R. a. T. C., “Applications of bioheat transfer simulations in hyperthermia”, Cancer Research, 44, 4788 (1984).
[14]  Dinesh Kumar, K. N. R., “A study on thermal damage during hyperthermia treatment based on DPL model for multilayer tissues using finite element Legendre wavelet Galerkin approach”, Journal of Thermal Biology, (2016).
[15]  Alexander LeBrun, R. M. and Zhu, L., “MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment”, Journal of Thermal Biology, (2016).
[16]  Sazgarnia, A. N. N., Mehdizadeh, H. and Shahamat, Z., “Investigation of thermal distribution for pulsed laser radiationin cancer treatment with nanoparticle-mediated hyperthermia”, Journal of Thermal Biology, 47, 32 (2015).
[17]  Ayani, M. B., “Source term prediction in a multilayer tissue during hyperthermia”, Journal of Thermal Biology, 52, 187 (2015).
[18]  Cuschieri, Z. W. I. A. M. G. D. L. H. L. L. M. L. D. M. S. C. S. B. A., “Image-based 3D modeling and validation of radiofrequency interstitial tumor ablation using a tissue-mimicking breast phantom”, International Journal of Computer Assisted Radiology and Surgery, 7, 941 (2012).
[19]  Makoto Suto, H. K., Maruta, K., Ohta, M., Tohji, K. and Jeyadevan, B., “Heat diffusion characteristics of magnetite nanoparticles dispersed hydro-gel in alternating magnetic field”, Journal of Magnetism and Magnetic Materials, 321, 3483 (2009).
[20]  Chao Hui, C. S., Yang, T., Bao, L., Tian, J., Ding, H., Li, C. and Gao, H.-J., “Large-scale Fe3O4 nanoparticles soluble in water synthesized by a Facile method”, Journal of American Chemical Society, 112, 11336 (2008).
[21]  Antonios Makridis, K. T., Tziomaki, M., Sakellari, D., Simeonidis, K., Angelakeris, M., Yavropoulou, M. P., Yovos, J. G. and Kalogirou, O., “In vitro application of Mn-ferrite nanoparticlesas novel magnetic hyperthermia agents”, Journal of Materials Chemistry B, (2013).
[22]  Ritchie Chen, M. G. C. a. P. A., “Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization”, ACS Nano (ACS Publications), 7 (10), 8990 (2013).
[23]  H. P. Kok, J. G., van den Berg, C. A. T., Stauffer, P. R., Hand, J. W. and Crezeel, J., “Thermal modelling using discrete vasculature for thermal therapy: A review”, International Journal of Hyperthermia, 29 (4), 336 (2014).
[24]  Tzu-Ching Shih, H.-S. K., Liauh, C.-T. and Lin, W.-L., “Thermal models of bioheat transfer equations in living tissue and thermal dose equivalence due to hyperthermia”,  14 (2), (2002).
[25]  Miller, M. M. S. a. D. F., “Nonlinear model for magnetic nanoparticle-based hyperthermia”, Int. J. Mathematical Modelling and Numerical Optimisation, 6 (3), 223 (2015).
[26]  Antonio Cervadoro, C. G., Pande, R., Sarangi, S., Preziosi, L., Wosik, J., Brazdeikis, A., Decuzzi, P., “Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles”, Plos One (open access), (2013).
[27]  M. Lahonian, A. A. G., “Research article: The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method”, International Journal of Hyperthermia, 27 (3), 266 (2011).
[28]  Pennes, H. H., “Analysis os tissue and artterial blood temperatures in the resting human forearm”, Applied Physiology, 1, (August 1948).
[29]  Man Zhang, Z. Z., Wu, S., Lin, L., Gao, H. and Feng, Y., “Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: A liver-mimicking phantom study”, Journal of Physics in Medicine & Biology, 60, (2015).
[30]  Holmes, P. K. R., “Thermal conductivity data for specific tissues and organs for humans and other mammalian species”, The University of Texas at Austin, (2009).
[31]  Verga, D. S. a. N., “Cancer treatment with hyperthermia”, Novel Beyond Conventional Approaches, (2011).
[32]  Wright, N. T., “Parameter correlation in models of hyperthermic cell death”, ASME 2011 Summer Bioengineering Conference, 117 (2011).
[33]  Yusheng Feng, J. T. O. a. M. N. R., “A two-state cell damage model under hyperthermic conditions: Theory and in vitro experiments”, Journal of Biomechanical Engineering, 130 (4), (2008).
[34]  Dewey, W. W. C., “Variation in sensitivity to heat shock during the cell-cycle of chinese hamster cells in vitro”, International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 19 (5), 467 (1971).
[35]  Rylander, M. N., Feng, Y., Zimmermann, K. and Diller, K. R., “Measurement and mathematical modeling of thermally induced injury and heat shock protein expression kinetics in normal and cancerous prostate cells”, Int. J. Hyperthermia, 26 (8), 748 (2010).
[36]  Feng, Y., Tinsley Oden, J. and Rylander, M. N., “A two-state cell damage model under hyperthermic conditions: Theory and in vitro experiments”, J. Biomech. Eng., 130 (4), 410 (2008).
[37]  Henle, K. J. and Dethlefsen, L. A., “Time-temperature relationships for heat-induced killing of mammalian cells”, Ann. N. Y. Acad. Sci., 335, 234 (1980).
[38]  Ratovoson, D., Huon, V. and Jourdan, F., “A 3D finite element model for hyperthermia injury of blood-perfused skin”, Comput. Methods Biomech. Biomed. Engin., 18 (3), 233 (2015).
[39]  Wright, N. T., “Comparison of models of post-hyperthermia cell survival”, Biomechanical Engineering, 135,510 (2013).
[40]  Weiswald, L. B., Bellet, D. and Dangles-Marie, V., “Spherical cancer models in tumor biology”, Neoplasia, 17 (1), 1 (2015).
[41]  Henrich, F., Rahn, H. and Odenbach, S., “Heat transition during magnetic heating treatment: Study with tissue models and simulation”, Journal of Magnetism and Magnetic Materials, 380, 353 (2015).
[42]  Attar, M. M., Haghpanahi, M., Amanpour, S. and Mohaqeq, M., “Analysis of bioheat transfer equation for hyperthermia cancer treatment”, Journal of Mechanical Science and Technology, 28 (2), 763 (2014).
[43]  Suto, M., Kosukegawa, H., Maruta, K., Ohta, M., Tohji, K. and Jeyadevan, B., “Heat diffusion characteristics of magnetite nanoparticles dispersed hydro-gel in alternating magnetic field”, Journal of Magnetism and Magnetic Materials, 321 (20), 3483 (2009).
[44]  Wang, Z., Aarya, I., Gueorguieva, M., Liu, D., Luo, H., Manfredi, L., Wang, L., McLean, D., Coleman, S., Brown, S. and Cuschieri, A., “Image-based 3D modeling and validation of radiofrequency interstitial tumor ablation using a tissue-mimicking breast phantom”, Int. J. Comput. Assist. Radiol. Surg., 7 (6), 941 (2012).
[45]  LeBrun, A., Ma, R. and Zhu, L., “MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment”,  Journal of Thermal Biology, 62,Part B,129 (2016).
[46]  Lebrun, A., Manuchehrabadi, N., Attaluri, A., Wang, F., Ma, R. and Zhu, L., “MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia”, Int. J. Hyperthermia, 29 (8), 730 (2013).
[47]  Bin Xie, R. S., Torti, F. M., Keblinski, P. and Torti, S., “Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers”, Physics in Medicine and Biology, 57 (18), 5765 (2013).
[48]  Pearce, J. A., “Improving accuracy in Arrhenius models of cell death: Adding a temperature-dependent time delay”, Journal of Biomechanical Engineering, 137,(2015).