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 Solubility data of solid in aqueous and different organic solvents are 
very important physicochemical properties considered in the design of 
the industrial processes and the theoretical studies. In this study, 
experimental solubility data of 666 pharmaceutical compounds in 
water and 712 pharmaceutical compounds in organic solvents were 
collected from different sources. Three different artificial neural 
networks, including multilayer perceptron, radial basis function, and 
support vector machine, were constructed to predict the solubility of 
these different pharmaceutical compounds in water and different 
solvents. Molecular weight, melting point, temperature, and the 
number of each functional group in the pharmaceutical compound and 
organic solvents were selected as the input variables of these three 
different neural network models. The neural network predictions were 
compared with the experimental data, and the SVR-PSO model with 
the Average Absolute Relative Deviation equal to 0.0166 for the 
solubility in water and 0.0707 for solubility in organic compounds was 
selected as the most accurate model. 
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1. Introduction 
Solubility is known as the maximum limit of 
solute dissolved in a solvent under specified 
conditions [1]. The IUPAC definition of 
solubility is an analytical composition of a 
saturated solution expressed as a proportion 
of a designated solute in a designated solvent 
[2]. The solubility is a strong function of 
intermolecular forces between the solute and 
solvent, describing the solvent-solute systems 
[3]. The solubility of a pharmaceutical in 
water and organic solvents is controlled by 
two types of interactions. The first interaction 

occurs between the pharmaceutical and the 
solvent molecules, and the other type of 
interaction is the interactions within the 
crystals of pharmaceutical and the solvent [4]. 
The solubility of a pharmaceutical in different 
solvents is influenced by numerous factors 
such as the particle and molecular size, 
boiling point of the solvent, the melting point 
of the pharmaceutical, the structure of the 
molecule, and temperature [5]. The solubility 
may be expressed as in concentration, 
molality, mole fraction, or mole ratio [6]. 
   Solubility data of solid in aqueous and 
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different organic solvents is one of the most 
important physicochemical properties 
considered in the design of the industrial 
processes and the theoretical studies. 
Production and purification of 
pharmaceuticals [7], design and optimization 
of industrial crystallization processes [8], 
separation of organic products [9], and 
chemical reaction systems [10] are just some 
examples of the importance of this property. 
Therefore, accurate knowledge of the 
solubility of solute in a given solvent is very 
important for developing optimal processes. 
Experimental determination of the solubility 
is difficult and time-consuming; therefore, 
many researchers have attempted to predict 
solubility. Generally, these studies are divided 
into two main categories. The first category 
includes the  thermodynamic models such as 
UNIFAC method [11], perturbed-chain 
statistical associating fluid theory (PC-SAFT) 
that predicts the solubility on the basis of the 
melting point and the enthalpy of fusion [12], 
and segment activity coefficient (COSMO-
SAC) model that predicts the solubility on the 
basis of the available surface area of the 
solvent [13]. A new theoretical model has 
been recently published by Zhao et al. [14], 
which is based on an estimated equation of 
molar intermolecular potential energy for 
species in fluid mixtures [14]. However, this 
category of methods has been reported to 
have several drawbacks to estimate the 
pharmaceutical solubility in different solvents 
[15]. 
   The second category is the 
mathematical/empirical/semi-empirical 
correlations to predict the solubility. One of 
the first semi-empirical methods was 
presented by Yalkowsky [16]. This 
correlation was based on the entropy of 
fusion, melting point, and octanol-water 

partition coefficient. Ruelle [17] predicted the 
solubility of pharmaceuticals using the mobile 
order theory considering the hydrophobic 
effect. Abraham and Le [18] used the linear 
solvation energy relationship (LSER) method 
based on the acidity and basicity of the solute, 
excess molar refractivity, polarizability of 
solute, and McGowan’s characteristic volume 
[18] to reach a new solubility correlation. 
Another method in this category may be the 
COSMO-RS, which is based on the quantum 
chemical calculations and Gibbs free energy 
of fusion [19]. Wang et al. [20] presented a 
method for solubility prediction using the 
atom types, the molecular polarizability, 
molecular weight, intermolecular hydrogen 
bonding, and hydrophobicity. The other 
methods are based on the quantitative 
structure–properties relationship (QSPR) such 
as group contribution [21] and atom 
contribution [22]. 
   One of the other powerful mathematical 
methods recently developed for the solubility 
prediction is the variety of neural networks 
and machine learning methods. Gharagheizi 
et al. [23] used the artificial neural network 
based on group contribution (ANN-GC) 
method for the prediction of critical properties 
and the acentric factor of pure compound 
presented. Back-propagation neural networks 
(BPNN) and radial basis function neural 
networks (RBFNN) were presented for the 
prediction of CO2 solubility in aqueous amine 
solutions [24]. Tatar et al. [25] designed and 
compared different neural network models to 
predict the solubility of carbon dioxide in 
ionic liquids [25]. Mehdizadeh et al. [26] 
applied the genetic algorithm-based least 
square support vector machine for the 
prediction of the solubility of 25 different 
solutes in supercritical carbon dioxide. They 
also compared their model predictions with 
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the results of several empirical methods. 
   All of these researches have shown that the 
solubility is a strong function of temperature, 
melting point, and chemical functional groups 
of solute and solvent. The purpose of this 
study is to develop three types of neural 
networks: multilayer perceptron (MLP), 
radial basis function (RBF), and support 
vector machine (SVM) based on the group 
contribution method (GC) and particle swarm 
optimization algorithm (PSO) for exact and 
comprehensive predictions of pharmaceutical 
solubility in water and organic solvents. 

2. Theory 
Artificial neural networks are mathematical 
models that fall into the category of 
computational intelligence tools. These 
networks are able to process a large quantity 
of data and achieve a generalized result. ANN 
models are powerful tools for function 
approximation, classification, and prediction 
by adjusting appropriate parameters [27]. The 
aim of this research is to develop different 
MLP, RBF, and SVR models and analyze 
their performance. The particle swarm 
optimization algorithm is also used to 
optimize the performance of the neural 
networks. 

2.1. Particle swarm optimization algorithm 
Particle swarm optimization algorithm is an 
optimization technique, introduced by 
Kennedy & Eberhart [28]. The main idea of 
this method is based on the collective motion 
of groups of animals such as birds and fishes 
to find food without any previous knowledge 
about its position. 
   In this algorithm, it is assumed that, in an n-
dimensional search space, the total number of 
particles is m, particle is the optimization 
variable shown by ( )mxxxx ,,, 21 2= , and 
each particle in the position of the space is 

presented by ( )Tniiii ixxxx ,,,, ,2,1, 2= , with the 

velocity of the ith particle 

( )Tniiii vvvv ,2,1, ,,, 2= . The value of the local 

best position of the ith particle is shown by

( )Tniiii pppp ,2,1, ,,, 2= , and the global best 

position of all particles is presented by 
( )Tngggg pppp ,2,1, ,,, 2= . After finding the 

local and global best positions, the velocity 
and the new location of each particle are 
updated with the following equations. These 
steps will continue several times until the 
desired answer is achieved. 

 

vij(t + 1) = w vij(t) + r1c1 �pij(t) − xij(t)� + r2c2 (gj(t)− xij(t)) (1) 
  
xij(t + 1) = xij(t) + vij(t + 1) (2) 

 
where i= 1…, m; 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡) and 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) denote the 
position and velocity of the ith particle in j-
dimension and the tth iteration, respectively; 
𝑤𝑤 denotes the inertia weight; 𝑐𝑐1 and 𝑐𝑐2 are 
acceleration coefficients; 𝑟𝑟1 and 𝑟𝑟2 are 
random numbers with a uniform distribution; 
𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) denotes the best position of the ith 
particle in j-dimension; 𝑔𝑔𝑗𝑗(𝑡𝑡) denotes the 

global best position [28]. The flowchart of 
this algorithm is shown in the Figure 1. 

2.2. Multilayer perceptron network 
Multilayer perceptron network (MLP) is one 
of the most popular neural network models to 
give approximate solutions for the nonlinear 
problems. The basic unit of all neural 
networks, including the MLP, is called 
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neuron. MLP network is a multi-layer 
structure of neurons linked to each other with 
the weight connections matrix, bias vectors, 
and transfer functions. The Purelin, Log 
sigmoid, and Tan sigmoid transfer functions 
are respectively defined as follows: 

f(x) = x (3) 
  

f(x) =
1

1 + exp (−x)
 (4) 

  

f(x) =
exp(x) − exp(−x)
exp(x) + exp(−x)

 (5) 

 
 

 
Figure 1. The PSO flowchart. 

 
   A typical MLP that is shown in Figure 2 
consists of at least 3 layers. These layers 
include an input layer that receives the input 

variables from the outside, one or more 
hidden layer(s) to estimate the output 
variables using the weight matrix, and an 
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output layer to present the output variable(s). 
The process of tuning the weights and biases 
using a training dataset that contains the 
experimental inputs and outputs is called the 
supervised Training Algorithm. There are two 
supervised methods for training the network 
and determining the neural network 
coefficients. The first category is called the 
classical algorithms such as back propagation 
algorithm as one of the most popular 

algorithms, and the second category is called 
the intelligent algorithms such as particle 
swarm optimization algorithm for training 
MLP. All of these methods are used to obtain 
the optimized connection weights and biases 
[29, 30]. The number of hidden layers, the 
type of the transfer function, and the general 
structure of the neural network are obtained 
by the trial-and-error approach. 

 

 
Figure 2. Schematic diagram of the three layer MLP. 

 
2.3. Radial basis function neural network 
(RBF) 
Radial basis function (RBF) networks are 
another type of feed-forward networks, which 
were introduced by D.S. Broomhead and 
David Lowe [30]. This type of network is 
based on the supervised learning methods and 
is a general approach to the quantization of 
information. MLP and RBF networks can be 
applied for the similar type of applications 
with the relatively same structure, yet 

different internal computation methods. A 
schematic diagram of an RBF neural network 
consisting of three layers is shown in Figure 
3: (a) an input layer that does not process the 
information and only distributes the input 
vectors to the hidden layer, (b) a hidden layer 
that converts 𝑛𝑛-dimensional input space to 𝑚𝑚-
dimensional feature space (𝑚𝑚 ≥ 𝑛𝑛) with 
nonlinear function mapping, and (c) an output 
layer. 
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Figure 3. Schematic diagram of RBF. 

 
The output of the output layer can be 
determined by a linear combination of the 
kernel functions, which is defined as follows: 

y = wTϕ(x) = �wiϕi(x)
m

i=1

+ b (6) 

where 𝑤𝑤 is the weight vector, b is the bias, 
𝜙𝜙(𝑥𝑥) is the kernel function defined as a 
function whose value depends only on the 
distance of 𝑥𝑥 from 𝑥𝑥0, and || ∗ || denotes the 
Euclidean norm as in the following: 

ϕ(x) = f(r) = f(||x − x0||) (7) 

   There are many kernel functions such as the 
polynomial, Gaussian, and multiquadric 
functions. The Gaussian function is used in 
this study: 

ϕi(x) = (−
1
2
�

x − mi 
σi

�
2

) (8) 

By substitution of Eq (8) in Eq (6), the output 

of the RBF neural network is computed 
according to Eq (9). 

y = �wiexp (−
1
2
�

x −mi 
σi

�
2

)
n

i=0

 (9) 

where 𝑤𝑤𝑖𝑖 is the weight connection from the 
hidden layer to the output layer, 𝑚𝑚𝑖𝑖 is the 
center of each neuron in the radial basis 
function, and 𝜎𝜎𝑖𝑖 is the spread parameter of the 
ith kernel [31]. The learning algorithm for 
determining these parameters consists of two 
sections. The first section consists of random 
sampling of input samples. The main 
parameters of  kernel function center (𝑚𝑚𝑖𝑖) of 
neurons in the hidden layer and the spread 
(𝜎𝜎𝑖𝑖) are determined in this section. The 
second section consists of training the weights 
that link the hidden layer to the output layer 
[32]. 

2.4. Support vector regression 
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Support vector machine for regression (SVR) 
is a supervised learning method for the 
function approximation. This network, which 
was first introduced by Vapnik, minimizes the 
risk of correct classification instead of 
minimizing the modeling error [33]. SVR 
neural networks have been used in recent 
years for modeling several systems [34, 35]. 
The goal of this method is to find the optimal 
hyperplane in the high-dimensional feature 
space and use it for the function 
approximation in the regression problem. 
Vapnik’s loss function is used for the 
application of support vector machine in the 
regression problem, which is known as the 𝜀𝜀-
insensitive loss function. In other words, 
errors are not significant as long as they are 
smaller than 𝜀𝜀, but the larger values are not 

allowed: 

Lε �yi,f(xi)�

= � |yi − f(xi)|− ε   if |yi − f(xi)| ≥ ε
 0                      otherwise                            

 
(10) 

   This function creates a hyperplane 𝑓𝑓(𝑥𝑥) 
which has the biggest deviation 𝜀𝜀 from the 
actually obtained targets 𝑦𝑦𝑖𝑖 for all training 
data. Suppose the training 
patterns(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2),… , (𝑥𝑥𝑙𝑙,𝑦𝑦𝑙𝑙), where 
𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛 is a feature vector, 𝑖𝑖 = 1,2,… ,𝑙𝑙, 𝑙𝑙 is 
the number of training patterns, and 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅 is 
the target value. Regression function of 𝑓𝑓(𝑥𝑥) 
can be formulated as follows: 

f(x) = wTϕ(x) +  b (11) 

   Similarly, the nonlinear regression problem 
can be expressed schematically in Figure 4. 

 

Figure 4. Nonlinear SVR with 𝜀𝜀-insensitive loss function [38]. 
 
where 𝜙𝜙(𝑥𝑥) indicates the nonlinear mapping 
function from the input space to the feature 
space. 𝑤𝑤 is the vector of weight coefficients, 
and b stands for the bias term. These 
parameters are estimated by minimizing the 
risk function with constraints as shown in the 
following: 

ϕ(w,ξ) =  
1
2 �

|w|�2 + C�(ξi + ξi∗) 
N

i=1

 (12) 

  

�
yi−< w,ϕ(xi) > −b ≤ ε − ξi

< w, ϕ(xi) > +b − yi ≤ ε − ξi∗

ξi. ξi∗ ≥ 0
 (13) 

< , > denotes dot product and C denotes the 



Yousefi, Movagharnejad 
 

90 Iranian Journal of Chemical Engineering, Vol. 16, No. 1 (Winter 2019) 
 

cost function measuring the empirical risk, 
and 𝜉𝜉𝑖𝑖, 𝜉𝜉𝑖𝑖∗ are the slack variables used to 
control overfitting; the solution problem as a 
quadratic programing based in the Karush-
Kuhn-Tucker (KKT) conditions for 
nonlinearly separable data could be achieved 
by simply preprocessing the training patterns 
into feature space by 𝜙𝜙(𝑥𝑥). In this state, the 
following equation is achieved. 

f(x) = �(αi − αi∗)
n

i=1

K(xi. x) + b (14) 

  

b =
1

|S|� yi −�(αi − αi∗)
n

i=1

K(xi. x)
i

− sign(αi + αi ∗) ε) 

(15) 

   In the above equations, 𝛼𝛼𝑖𝑖 and 𝛼𝛼𝑖𝑖∗ are 
nonzero Lagrangian multipliers, and S 
denotes support vector. 𝐾𝐾(𝑥𝑥𝑖𝑖. 𝑥𝑥) is the kernel 
function that represents the inner product 
(< 𝜙𝜙(𝑥𝑥𝑖𝑖),𝜙𝜙(𝑥𝑥𝑗𝑗) >). Different kernels, such 
as linear, polynomial, and Gaussian, may be 
used as kernel functions for regression; 
however, in this study, the Gaussian function 
is used  as the kernel [36]. 

3. Results and discussion 
3.1. Data collection and preprocessing 
In order to create a comprehensive model for 
the solubility prediction, a large experimental 
dataset has to be collected. In this study, the 
experimental aqueous solubility data of 666 
different pharmaceutical compounds [37–39] 
and solubility data of 712 pharmaceutical 
compound in organic solvents [39–43] were 
collected from different standard sources. The 
chemical structures of all pharmaceutical 
compounds and organic solvents of the 
dataset were presented according to the first 
order functional groups of the Marrero and 
Gani method [44]. The dataset consisted of 78 
functional groups for the aqueous systems and 

65 structural groups for the organic solvents, 
respectively. The input variables for the 
solubility prediction consisted of the melting 
point (MP), molecular weight (MW), 
temperature (T), and the number of functional 
groups forming the molecule of a 
pharmaceutical compound and the organic 
solvents (𝑁𝑁𝑖𝑖). 
   All data were divided into three groups of 
training, validation, and testing. The training 
data consisting of (70 %) of all data were 
used to construct the structure of the ANN 
and update the weight vector and biases. The 
validation data consisting of (10 %) of the 
total data were used to validate the 
generalized feature of the model. The testing 
data consisting of (20 %) of data were used to 
check the model performance [45]. The data 
were normalized between [−1 +1] due to Eq. 
(16): 

pn.i = 2 ∗
pi − pmin

pmax − pmin
− 1 (16) 

where 𝑝𝑝𝑛𝑛.𝑖𝑖 stands for the normalized value of 
input variable 𝑝𝑝𝑖𝑖; 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 and pmax stand for the 
minimum and maximum values, respectively 
[24]. 
   The next calculation step is to find a 
relationship between the chemical functional 
groups and the solubility data using the 
collected dataset. For this purpose, the 
multilayer perceptron neural network, radial 
basis function network, and the support vector 
machine for regression were applied to the 
collected dataset. 

3.2. Model development 
3.2.1. The optimized MLP network 
configuration 
The newff MATLAB function was used to 
create the MLP neural network. The 
optimized MLP network architectures were 
designed by obtaining the number of neurons 
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and the transfer function in each layer by trial 
and error according to the minimization of an 
objective function, which is the Average 
Absolute Relative Deviation (AARD) 
between the output of the developed MLP and 
the target values for the presented dataset. 
This optimization process is performed during 
the training process with the Levenberg-
Marquardt (LM) and particle swarm 
optimization algorithms to determine the 
weight matrix and bias vector. 
   To avoid the overfitting of the neural 
network, the number of the neurons in the 

hidden layer of the network was limited to 20. 
The MLP model was trained with different 
transfer functions, training algorithms, and 
the variable number of neurons in the hidden 
layers. Finally, the MLP models with the 81-
14-1 and 68-14-1 architectures (81 and 68 
neurons in the input layer, 14 neurons in the 
hidden layer, and 1 neuron in the output 
layer) with the tan-sigmoid transfer function 
showed the least AARD value for water and 
organic solvents. The results are presented in 
Figure 5. 

 

 
Figure 5. AARD versus the number of neurons in the second hidden layer for (a) water and (b) organic 

solvents. 
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algorithms versus the experimental value of 
test data are compared, as shown in Figures 6 
and 7. 
   The error distribution of the optimized 

MLP-LM and MLP-PSO models for water 
and organic solvents is shown in Figures 8 
and 9 to detect the accuracy of different MLP 
models. 

 

Figure 3. Regression graph for pharmaceutical solubility in (a) water and (b) organic solvents for test data 
by the optimized MLP-LM model. 

 

Figure 4. Regression graph for pharmaceutical solubility in (a) water and (b) organic solvents for test data 
by the optimized MLP-PSO model. 
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Figure 5. Histogram of error distribution for pharmaceutical solubility in (a) water and (b) organic 
solvents for test data by the optimized MLP-LM model. 

 

Figure 6. Histogram of error distribution for pharmaceutical solubility in (a) water and (b) organic 
solvents for test data by the optimized MLP-PSO model. 
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network was obtained by minimizing the 
Average Absolute Relative Deviation 
(AARD). The optimal value of the spread and 
maximum neuron numbers according to 
AARD were equal to 80 and 30 for water and 
organic solvents, respectively. The predicted 
values of solubility for water and organic 

solvents are presented versus the 
experimental values of the test data in Figure 
10. 
   The error distribution of the optimized RBF 
model for water and organic solvents is 
shown in Figure 11 to show the accuracy of 
the RBF model. 

 

Figure 7. Regression graph for pharmaceutical solubility in (a) water and (b) organic solvents for test data 
by the optimized RBF model. 

 

Figure 8. Histogram of error distribution for pharmaceutical solubility in (a) water and (b) organic 
solvents for test data by the optimized RBF model. 
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3.2.3. The proposed SVR-PSO model 
In this study, the support vector regression 
method combined with particle swarm 
optimization was used to develop a neural 
model for the prediction of pharmaceutical 
solubility. A Gaussian function was used as 
the kernel function with a spread parameter, 
called sigma. The first step of designing an 
SVR model is to obtain the parameters (C, 

epsilon) and the RBF spread parameter. To 
search for the optimum value of these 
parameters, the particle swarm optimization 
algorithm based on the Average Absolute 
Relative Deviation as the objective function 
was used. This algorithm is shown in the 
flowchart presented in Figure 12. The 
optimum values of the parameters for the 
current dataset are presented in Table 1. 

 

 

Figure 9. Flowchart of SVR-PSO model. 
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Table 1 
Optimum parameters for the SVR-PSO model. 

solvent C Epsilon Sigma 

water 195.0803 0.001274 0.246 

Organic solvents 425.26 0.00793 0.298 
 
The predicted solubility values for water and 
organic solvents using the optimum SVR-
PSO model are compared with the testing 
experimental data in Figure 13. 

The error distribution of the optimized SVR-
PSO model for water and organic solvents is 
shown in Figure 14. 

 

Figure 10. Regression graph for pharmaceutical solubility in (a) water and (b) organic solvents for test 
data by the optimized SVR-PSO model. 

 

Figure 11. Histogram of error distribution for pharmaceutical solubility in (a) water and (b) organic 
solvents for test data by the optimized SVR-PSO model. 
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3.2.4. The statistical measures for the 
model performance 
In order to compare the accuracy of 
prediction models, three different statistical 
measures of Average Absolute Relative 
Deviation (AARD), correlation factor (𝑅𝑅), 
and Root Mean Squared Error (RMSE) were 
used. These parameters are calculated as 
follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  �
�𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) − 𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖)�

𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖)

𝑁𝑁

𝑖𝑖=1

 (17) 

  

𝑅𝑅 = �1− �
∑ �𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) − 𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖)�

2
𝑁𝑁
𝑖𝑖=1

∑ �𝑌𝑌exp(𝑖𝑖)�
2𝑁𝑁

𝑖𝑖=1

 � (18) 

  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
1
𝑁𝑁
�(

𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) − 𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖)
𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖)

 )
𝑁𝑁

𝑖𝑖=1

 (19) 

   In these equations, N is the number of input 
data, and 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) and 𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖) are the 
predicted and actual output values of the 𝑖𝑖𝑡𝑡ℎ 
input dataset, respectively [25]. 
   In order to compare the accuracy of the 
developed models, the statistical parameters 
for training, testing, and validation data were 
calculated, as presented in Table 2. The 
results of this table showed that the SVR-PSO 
model was more accurate than the MLP and 
RBF models. 

 

Table 2 
Statistical parameters of the developed models. 

 
Solvent 

 
Model 

Training Testing Validation 
AARD RMSE 𝐑𝐑 AARD RMSE 𝐑𝐑 AARD RMSE 𝐑𝐑 

 
 
 
 

Water 

MLP-
LM 

0.7360 0.13937 0.89286 0.9807 0.13729 0.8972 1.4146 0.11866 0.91751 

MLP-
PSO 

1.3208 0.20157 0.75068 1.0365 0.20459 0.79138 0.8621 0.21065 0.7214 

RBF 0.9487 0.1316 0.89612 0.6568 0.1467 0.87061 0.6120 0.1215 0.91327 

SVR-
PSO 

0.0168 0.003475 0.9994 0.0162 0.003768 0.99993 0.0166 0.00366 0.99992 

 
 
 

Organic 
solvents 

MLP-
LM 

2.4888 0.15449 0.85542 0.9645 0.18098 0.81719 0.9665 0.16379 0.8585 

MLP-
PSO 

2.7953 0.22916 0.60134 2.2191 0.21087 0.69976 1.4752 0.22452 0.65947 

RBF 2.9844 0.18367 0.764 1.2986 0.16092 0.77824 1.3670 0.1424 0.82132 

SVR-
PSO 

0.1186 0.014916 0.99891 0.0775 0.016148 0.998 0.0707 0.01720 0.99783 

 
4. Conclusions 
Four intelligence models, namely MLP, 
MLP-PSO, RBF, and SVR-PSO, based on the 
group contribution, and neural networks were 
developed in order to present a 
comprehensive and accurate model for the 
prediction of pharmaceutical solubility in 

water and organic solvents. The configuration 
of 81-14-1 and 68-14-1 MLP models with 
Levenberg-Marquardt (LM) training 
algorithm showed the AARD of 0.9807 and 
0.9645 for pharmaceuticals in water and 
organic solvents, respectively, while the MLP 
model with particle swarm optimization 
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(PSO) training algorithm showed the AARD 
equal to 1.3208 and 2.7953 for the solubility 
of pharmaceuticals in water and organic 
solvents, respectively. Optimum RBF 
network architecture was created with 30 
neurons and a spread equal to 80. The AARD 
of this model was equal to 0.6568 for 
pharmaceutical solubility in water and 1.2986 
for pharmaceutical solubility in organic 
solvents. PSO algorithm was used to 
determine the cost function and the C, 
epsilon, and sigma parameters in the SVR 
model. The AARD of the SVR model 
optimized by the PSO algorithm was equal to 
0.0162 and 0.0775 for water and organic 
solvents, respectively. The cross plot and 
error distribution figures showed that the 
SVR-PSO model with RBF kernel function 
predicted the pharmaceutical solubility better 
than MLP-LM, MLP-PSO, and RBF models. 
These results showed that the predictions of 
SVR-PSO were the most comprehensive and 
accurate. 
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